Its not exactly lightweight, but the Netdata integration will get you all of that.
Securing Netdata itself can be a bit of a chore, and then the integration requires creating sensors of interest in your configuration.yaml file. Have a look, it might be an interesting project if you're up for a challenge.
My sump pit is pretty shallow, and is dry about half of the time. My challenge is that the sump is on a float switch which doesn't activate until the water level is just about an inch (15mm) below the bottom of my slab. It doesn't take much of a delay for it to overflow.
There are three sensor types I'm aware of: a resistive "dipstick," ultrasonic distance gauge, and a bathymetric depth gauge.
The resistive dipsticks are only about 6in (15cm) in length, and would be good to determine if the water is within that distance of a target water line. I would position it on the side of the pit with the effective upper end set some buffer below the top surface of the slab floor, and possible gram the logic to alert when the water lever rises above the bottom of the slab. I would otherwise be blind to the water level if it is below Tue bottom of to sensor.
The ultrasonic sensor looked interesting, but I have pets and I try to avoid ultrasonics in the environment when I can. It also strikes me as perhaps the least reliable (or most crosstalk-prone) of the sensors because it has a larger field of view, and might be fooled by the equipment in the pit.
That leaves the bathy sensor. Its basically a diaphragm and a pressure sensor you screw to a waterproof housing, and submerge. Placed near the bottom of the pit, it would read the depth of the water by the pressure of the column above it. Most accurate, but also the most expensive. Last I checked, the sensor itself was US$60 on the usual online markets.
Ultimately I'll probably do a length of copper pipe with a 90 elbow and a cap. I'll drill and tap a port through the cap and thread and seal the bathy sensor into it, and feed the wire back up the pipe to the controller. I'm not sure if there a driver for it in ESPHome, but if nothing else I expect I can probably just read the analog voltage and alert on a set point.
I haven't really fleshed it out as a design yet, but that's what I'm most likely to do.
Either an ESP32 BLE proxy via MQTT with a Tile-like beacon in the backpack, or a cipher lock with a Kid Code are probably the most straightforward solutions.
If you have Frigate NVR set up, there's a project called Double Take that does facial recognition. Looks like a bit of work and needs training, but it could be a fun project.
Have you tried Mint, specifically LMDE¹? It (Mostly) Just Works™ like Ubuntu, but without the Canonical baggage. It handled my weird Lenovo Carbon X1 slate out of the box. Stable like Debian, progressive like Debian isn't.
Definitely check in with the utility before mucking with the meter. You can find your way into a lot of trouble tampering with active meters. Chances are there's new meter tech out your utility would install, and of which you could take advantage.
Check this thread. https://community.home-assistant.io/t/smart-water-meter/451935 . You'd install it down flow of your utility meter, and would need ESP32 to read the meter. It's a bit of work, but if you're already running ESPHome, it looks pretty straightforward.
On a long shot, you might consider looking into an inexpensively RTL-SDR software radio dongle, and use rtl_433 to scan a few common frequencies the utilities use to scan their meters from the street. I happened to find my neighbor's electrical meter on a common wireless weather station frequency, and if In were so inclined, could publish it to MQTT for HA to pick up.
Sure. Think of it like Lego bricks or one of those 1000-in-1 electronics kits. These kits don't do anything specific, they're building blocks you use to address a need you have in your home automation vision.
The ESP32 kits are just an ESP32 development board (mine are WROOM boards from Freenove) which has the microprocessor, headers breaking out the IO pins, and a "loader" module that facilities uploading code and is used to power the device with a USB cable. The boards also have onboard WiFi and Bluetooth radios. The -CAM variety has a low profile header to seat a small camera module (included). Look for "Freenove ESP32 WROOM" on your preferred online marketplace.
There are several ways to interact with (program) your ESP32 boards. The easiest and most straightforward is to use the ESPHome add-on in HA from the HACS store, along with the companion integration. The ESPHome add-on provides a software ecosystem of drivers and functions for a laundry list of hardware devices you can use in your project-- sensors, switches, lights, speakers, etc. The ESPHome wiki is sort of a catalog of supported peripherals you can easily use in your build projects. Many times, you can substitute components or extend an existing component driver. Mostly you assemble your components and the controller, and then write some YAML do tell ESPHome what devices are plugged into what pins. ESPHome more or less handles the rest.
The ESP32 integration creates HA devices and entities of the devices and sensors in the ESPHome add-on for use as triggers, conditions or actions in automation.
As for my specific doodads:
PIR is a Passive Infrared Receiver. It monitors its field of view for a change in infrared light (heat) which indicates a "hot.blob" has entered or left its field of view. The model I use, AM312, is designed to signal a change in IR light by raising a signal pin to +3 volts, which has applications in presence detection. It is fast, but not accurate. It also tends to "go blind" when the hot blob stops moving, and can be subject to false positives when the HVAC kicks on or by dappled sunlight
The mmWave radar is a Seeed R60A 60Ghz radar module. This particular module is optimized for human presence detection and fall detection. It uses millimeter wave radar to acquire and track humans in its field of view. 60GHz gives enough resolution to detect heartbeat, respiration and micromkvements like fidgeting. It talks to the ESP32 over the I2C bus (a digital IO bus similar to USB). It has advantages over the PIR sensor because it actively tracks its targets and can even tell if there are multiple people. Its less prone to false positives from environmental changes and smaller animals. Unfortunately, it can take several seconds to acquire a target and begin tracking it. In a presence application, a human could walk across several steps into the field of view within that time, giving the impression of a slow response.
Using both sensors in a presence application is a sort of belt-and-suspenders approach. You can compare the state of both sensors in your automations to determine presence with greater accuracy.
As for learning HA itself: we all started in a similar place not even knowing what we didn't know yet. You sort of poke and play and build some bad automations. Then you start to research new projects and start to learn what you don't know yet. That's OK: its a roadmap to future knowledge.
In my rig, I use HA to solve problems or address nuisance situations around the house. Wife and kids are forever leaving doors open with the HVAC on. I programmed HA to watch the HVAC (ecobee thermostat) and the states of the windows doors. If a door gets left open for more than 10 minutes, HA starts flashing lights as an indicator for someone to check notifications. After 20 minutes of the door/window being open, it turns off the HVAC and sends a push notification to my phone that someone is being a dumbass.
Another one is to shut off the basement lights at 10pm because the kids never remember to after they're done gaming down there.
Eventually you want to do.more sophisticated things, and that when the rabbit hole gets real deep.
I have two Digi WLED controllers a handful of project kits, myself.
The WLED boards drive some addressable LED strings in my living room and on my patio. They hardly count as "project" kits, but learning about interfacing TTL logic with the LED driver boards was a helpful experience. I learned a lot about the different GPIO uses and modes.
For the project kits I've built, I've been focused around presence and environment sensors. Using esphome I've successfully built PIR (AM312) + mmWave radar module (R60A) presence sensors, natural gas detectors for kitchen and basement utility areas, and a water leak sensor for the laundry area. I had goals of building a 5-in-1 presence sensor, but you can buy products for those now; its a solved problem.
I've been considering a design for a sump pit depth gauge because that sounds like useless information that I'd like to have for some reason.
I'll probably get interested in energy management soon, and will look into current clamps and tracking usage at smart receptacles.
I'm in IT in a healthcare-adjacent sector. Never underestimate the motivation or tenacity of foreign state actors, organized crime and chaotic neutral hacking collectives. You have limited time and budget, and both financial and risk based approval processes to deal with. They have time, ideology¹, and financial incentives.
You can't win in the face of that.
¹ sometimes it's hacking for hackings sake, but more typically it's to disrupt critical services and extort modest capital to go away. Rinse, repeat, make that bank on volume.
Sounds on-brand to me. it not like you'd expect them to double down on sex education or provide contraceptives.
They're telling you where their priorities are. Now Go Forth and Multiply.